

SPIRE: a PV Plant with Thermal Cogeneration

CAPSUN

PROPERTY OF CAPSUN TECHNOLOGIES AND GHENOVA INGENIERIA Any copy, distribution or public communication of this document is forbidden, unless specifically authorized by the company.

14/09/2018

CAPSUN

- Technological startup founded in 2017
- Highly qualified personnel coming from Abengoa Solar R&D and Centro Superior Investigaciones Científicas (CSIC).
- Core knowledge in optical technologies for Solar Applications (both Photovoltaic – PV – and Concentrated Solar Power – CSP -).
- Business Model oriented to design and manufacturing of the optical light selective filter

HCPV

SPIRE Filters

14/09/2018

GHENOVA

14/09/2018

- Integrated Engineering Services
- Spanish leadership. International presence
- > 22 M€ Sales
- > 2/3 out of Spain
- ~ 400 profesionals
- Differential
 Business Model

CP SOLNOVA	СР	BIOETHANOL
1 Y 3	SOLNOVA 4	ROTTERDAIVI
CC AIN BENI MATHAR	TP PS 50	CP HELIOENERGY 1 Y 2
CP SOLACOR	CP HELIOS	СР
1 Y 2	1 Y 2	SOLABEN
CP SHAMS I	HY SOLANA	CP MOJAVE
ТР	СР КАХИ	ТР КНІ
SOLUGAS	SOLAR I	SOLAR I

PROPERTY OF CAPSUN TECHNOLOGIES AND GHENOVA INGENIERIA

SPIRE TECHNOLOGY CONCEPT

Explanatory Video

http://iplayerhd.com/player/video/700f32da-b9d2-4aa8-8911-e563c17172d6/share

SPIRE Technology project has been financed by CDTI - Spanish Ministry of Economy under INNTERCONECTA 2016 call (ITC-20161132)

CDTI grant: 948.274,00 € Total investment: 1.761.230,00 €

14/09/2018

+40% reco	% of energy overy	CSP Part work as a thermal battery	κς
100% of 1-axis PV without filters	n one Plant – 140 9	%	
PV simplicity and competitiveness	50105	CSP storage of heat for	electricity

SPIRE

for electricity direct generation

CSP storage of heat for electricity dispatching and other uses of heat

SPIRE Plant Main Technical Strengths

No corrosion or degradation. Inorganic materials

if or (c +) g < c + lengthy_e migged).e(a); function(a);)); [u = a + {C^{has}, a, a, a}; if (e = .i.e. (b), = a.englace(/ +(=)/g, -*), see() (e - r(c(c), b) &b b.p.sh(s(c)); = {(Hore, logged).e(a), e = (d), [U = (b - (c), a) = (d), = {(D - (c), a) = (b), (c - (c), a) = (d), = {(D - (c), a) = (c - (c), a) = (d), = {(D - (c), a) = (c - (c), a) = (d), = {(D - (c), a) = (c - (c), a) = (d), = {(D - (c), a) = (c - (c), a) = (d), = {(D - (c), a) = (c - (c), a) = (c

Optimal design using complex genetic algorithm

Fast response turbines. Power delivered when required. Reliability up to 40 years

Heat out in solar panels. Better temperature performance and less degradation

No dumped energy . Better attenuation: infrared travels better in dusty and damp environments

Works well in lower DNI locations. Panels take diffuse irradiation

Better power density. Saves 40% of land due to a better utilization of solar spectrum

Modular and Scalable concept. Thermal Tower per 20 – 30 MW of PV

Technology Comparative: Levelized Cost of Heat (LCOH) parameter

**CSP: Concentrated Solar Power Generation. DSG: Direct Steam Generation.

7

Comparative Typical PPAs Electrical Dispatchable Technologies (I)

PROPERTY OF CAPSUN TECHNOLOGIES AND GHENOVA INGENIERIA

Proof of concept successfully tested in real environment – TRL7/8

Technology tested in lab (CSIC, Fraunhofer and DEKRA) and validated in a real Power Plant at Plataforma Solar de Almería

Specular reflection – 39% filter. Distance 157m on 12 x 12 m target

14/09/2018

Sample with filter

Temperature measurements. T= 15 degrees. Wind = 3.2 m/s

Installation on PSA heliostat

PIRGIPHERATIO DE ACASSISININT EIGHEN OLODIGIGEE SA&I IG IGENEOVOAV AN OLEVENEHÉIAN A

Pilot Plant features

Plant Specifications		
Power of PV solar field	315 KW	Assuming 250 W per module x 1260
Thermal output per day	2100 Kwht	kWht/day; this energy is wasted because the hot fluid is cooled down and recirculated
Fluid	HTF at 380⁰	Could be direct steam but preferably with HTF to test storage possibilities
Electricity per year	590 MWh	Assumes 0.83 PR due to better operating T and 0.9 cosine factor and 5.4 kwh/mw/day
Investment	\$3 M	Plant financing depending on agreement with partner
Project duration	9 months	Power on after 9 month
Cost of electricity (c\$/kWh)	To be agreed with final user	Depending on financial conditions.
Cost of steam (c\$/KWht)	To be agreed with final user if heat is finally used	Depending of financial conditions
Operation & Maintenance (O&M)	To be agreed with final user	Depending on system scalability to be agreed with partner
Land	5-10	На

10

PROPERTY OF CAPSUN TECHNOLOGIES AND GHENOVA INGENIERIA